Skip to content

Stability and linear response

The core of the harmonic balance method is expressing the system's behaviour in terms of Fourier components or harmonics. For an N-coordinate system, we choose a set of Mi harmonics to describe each coordinate xi :

xi(t)=j=1Miui,j(T)cos(ωi,jt)+vi,j(T)sin(ωi,jt),

This means the system is now described using a discrete set of variables ui,j and vi,j. Constructing the vector

u(T)=(u1,1(T),v1,1(T),uN,MN(T),vN,MN(T)),

we may obtain the harmonic equations (see an example of this procedure)

du(T)dT=F¯(u)

where F¯(u) is a nonlinear function. A steady state u0 is defined by F¯(u0)=0.

Stability

Let us assume that we found a steady state u0. When the system is in this state, it responds to small perturbations either by returning to u0 over some characteristic timescale (stable state) or by evolving away from u0 (unstable state). To analyze the stability of u0, we linearize the equations of motion around u0 for a small perturbation δu=uu0 to obtain

ddT[δu(T)]=J(u0)δu(T),

where J(u0)=uF¯|u=u0 is the Jacobian matrix of the system evaluated at u=u0.

The linearised system is exactly solvable for δu(T) given an initial condition δu(T0). The solution can be expanded in terms of the complex eigenvalues λr and eigenvectors vr of J(u0), namely

δu(T)=rcrvreλrT.

The dynamical behaviour near the steady states is thus governed by eλrT: if Re(λr)<0 for all λr, the state u0 is stable. Conversely, if Re(λr)>0 for at least one λr, the state is unstable - perturbations such as noise or a small applied drive will force the system away from u0.

Linear response

The response of a stable steady state to an additional oscillatory force, caused by weak probes or noise, is often of interest. It can be calculated by solving for the perturbation δu(T) in the presence of an additional drive term.

ddT[δu(T)]=J(u0)δu(T)+ξeiΩT,

Suppose we have found an eigenvector of J(u0) such that J(u)v=λv. To solve the linearised equations of motion, we insert δu(T)=A(Ω)veiΩT. Projecting each side onto v gives

A(Ω)(iΩλ)=ξvA(Ω)=ξvRe[λ]+i(ΩIm[λ])

We see that each eigenvalue λ results in a linear response that is a Lorentzian centered at Ω=Im[λ]. Effectively, the linear response matches that of a harmonic oscillator with resonance frequency Im[λ] and damping Re[λ].

Knowing the response of the harmonic variables u(T), what is the corresponding behaviour of the "natural" variables xi(t)? To find this out, we insert the perturbation back into the harmonic ansatz. Since we require real variables, let us use δu(T)=A(Ω)(veiΩT+veiΩT). Plugging this into

δxi(t)=j=1Miδui,j(t)cos(ωi,jt)+δvi,j(t)sin(ωi,jt)

and multiplying out the sines and cosines gives

δxi(t)=j=1Mi{(Re[δui,j]Im[δvi,j])cos[(ωi,jΩ)t]+(Im[δui,j]+Re[δvi,j])sin[(ωi,jΩ)t]+(Re[δui,j]+Im[δvi,j])cos[(ωi,j+Ω)t]+(Im[δui,j]+Re[δvi,j])sin[(ωi,j+Ω)t]}

where δui,j and δvi,j are the components of δu corresponding to the respective harmonics ωi,j.

We see that a motion of the harmonic variables at frequency Ω appears as motion of δxi(t) at frequencies ωi,j±Ω.

To make sense of this, we normalize the vector δu and use normalised components δu^i,j and δv^i,j. We also define the Lorentzian distribution

L(x)x0,γ=1(xx0)2+γ2

We see that all components of δxi(t) are proportional to L(Ω)Im[λ],Re[λ]. The first and last two summands are Lorentzians centered at ±Ω which oscillate at ωi,j±Ω, respectively. From this, we can extract the linear response function in Fourier space, χ(ω~)

|χ[δxi](ω~)|2=j=1Mi{[(Re[δu^i,j]Im[δv^i,j])2+(Im[δu^i,j]+Re[δv^i,j])2]L(ωi,jω~)Im[λ],Re[λ]+[(Re[δu^i,j]+Im[δv^i,j])2+(Re[δv^i,j]Im[δu^i,j])2]L(ω~ωi,j)Im[λ],Re[λ]}

Keeping in mind that L(x)x0,γ=L(x+Δ)x0+Δ,γ and the normalization δu^i,j2+δv^i,j2=1, we can rewrite this as

|χ[δxi](ω~)|2=j=1Mi(1+αi,j)L(ω~)ωi,jIm[λ],Re[λ]+(1αi,j)L(ω~)ωi,j+Im[λ],Re[λ]

where

αi,j=2(Im[δu^i,j]Re[δv^i,j]Re[δu^i,j]Im[δv^i,j])

The above solution applies to every eigenvalue λ of the Jacobian. It is now clear that the linear response function χ[δxi](ω~) contains for each eigenvalue λr and harmonic ωi,j :

  • A Lorentzian centered at ωi,jIm[λr] with amplitude 1+αi,j(r)

  • A Lorentzian centered at ωi,j+Im[λr] with amplitude 1αi,j(r)

Sidenote: As J a real matrix, there is an eigenvalue λr for each λr. The maximum number of peaks in the linear response is thus equal to the dimensionality of u(T).

The linear response of the system in the state u0 is thus fully specified by the complex eigenvalues and eigenvectors of J(u0). In HarmonicBalance.jl, the module LinearResponse creates a set of plottable Lorentzian objects to represent this.

Check out this example of the linear response module of HarmonicBalance.jl